Home
Class 12
MATHS
I=int(1)/(x(log x)^(m))dx...

`I=int(1)/(x(log x)^(m))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x(log x)^(2))dx

int(1)/(log x)dx

int(1)/(x log x)dx

If I_(m)=int_(1)^(x) (log x)^(m)dx satisfies the relation I_m = k-lI_(m-1) then,

int(1)/(x(1+log x))dx

int(1)/(x(3+log x))dx

int(1/x+log x)dx

int 1/(x(log x)^2)dx

Given I_(m)=int_(1)^(e)(log x)^(m)dx, then prove that (I_(m))/(1-m)+mI_(m-2)=e

Evaluate: (i) int(1)/(x)(log x)^(2)dx (ii) int sin^(5)x cos xdx