Home
Class 12
MATHS
Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(...

Prove that `tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

prove that 2(tan^(-1)1)/(3)+(tan^(-1)1)/(7)=(pi)/(4)

Prove that tan^(1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)

Prove that sin ^(-1).(3)/(5) = tan ^(-1) .(3)/(4) .

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4