Home
Class 12
MATHS
Let vec aa n d vec b be two non-colline...

Let ` vec aa n d vec b` be two non-collinear unit vector. If ` vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v|` is `| vec u|` b. `| vec u|+| vec udot vec a|` c. `| vec u|+| vec udot vec b|` d. `| vec u|+ hat udot| vec a+ vec b|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec aa n d vec b be two non-collinear unit vector. If vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v| is a. | vec u| b. | vec u|+| vec udot vec a| c. | vec u|+| vec udot vec b| d. | vec u|+ hat udot| vec a+ vec b|

vec aa n d vec b are two non-collinear unit vector, and vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec bdot Then | vec v| is | vec u| b. | vec u|+| vec udot vec b| c. | vec u|+| vec udot vec a| d. none of these

Let vec a and vec b be two non collinear unit vectors. If vec u = vec a - (vec a . vec b) vec b and vec nu = vec a xx vec b , then |vec nu| =

Let vec a and vec b be two non-collinear unit vector.If vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b, then |vec v| is |vec u| b.|vec u|+|vec u*vec a|c.|vec u|+|vec u*vec b|d|vec u|+widehat u.|vec a+vec b|

vec a and vec b are two non-collinear unit vector, and vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b Then |vec v| is |vec u| b.|vec u|+|vec u*vec b| c.|vec u|+|vec u*vec a| d.none of these

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec u = vec a - vec b, vec nu = vec a + vec b and |vec a| = |vec b| =2 , then |vec u xx vec nu| is

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .