Home
Class 11
MATHS
Consider a circle x^2+y^2+a x+b y+c=0 l...

Consider a circle `x^2+y^2+a x+b y+c=0` lying completely in the first quadrant. If `m_1a n dm_2` are the maximum and minimum values of `y/x` for all ordered pairs `(x ,y)` on the circumference of the circle, then the value of `(m_1+m_2)` is (a)`(a^2-4c)/(b^2-4c)` (b) `(2a b)/(b^2-4c)` (c)`(2a b)/(4c-b^2)` (d) `(2a b)/(b^2-4a c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a circle x^(2)+y^(2)+ax+by+c=0 lying completely in the first quadrant .If m_(1) and m_(2) are maximum and minimum values of y//x for all ordered pairs (x,y) on the circumference of the circle, then the value of (m_(1)+m_(2)) is

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

The line y=mx+1 is a tangent to the curve y^(2)=4x if the value of m is (A) 1(B)2(C)3(D)(1)/(2)

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

If a+b+c=0&a^(2)+b^(2)+c^(2)=1 then the value of a^(4)+b^(4)+c^(4) is

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is 1 b.4 c.(1)/(2) d.(1)/(4)

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If x=a cos theta and y=b sin theta, then b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2)( b) ab(c)a^(4)b^(4)(d)a^(2)+b^(2)