Home
Class 12
MATHS
If the four consecutive coefficients in ...

If the four consecutive coefficients in any binomial expansion be `a,b,c and d` then (A) `(a+b)/a,(b+c)/b,(c+d)/c` are in H.P. (B) `(bc+ad)(b-c)=2(ac^2-b^2d)` (C) `b/a,c/b,d/c` are in A.P. (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the four consecutive coefficients in any binomial expansion be a, b, c, d, then prove that (i) (a+b)/a , (b+c)/b , (c+d)/c are in H.P. (ii) (bc + ad) (b-c) = 2(ac^2 - b^2d)

If the four consecutive coefficients in any binomial expansion be a, b, c, d, then prove that (i) (a+b)/a , (b+c)/b , (c+d)/c are in H.P. (ii) (bc + ad) (b-c) = 2(ac^2 - b^2d)

If the four consecutive coefficients in any binomial expansion be a, b, c, d, then prove that (i) (a+b)/a , (b+c)/b , (c+d)/c are in H.P. (ii) (bc + ad) (b-c) = 2(ac^2 - b^2d)

If a,b,c,d are any four consecutive coefficients of any expanded binomial then (a+b)/(a),(b+c)/(b),(c+d)/(c) are in

Let a,b,c,d be the foru cosecutive coefficients int eh binomial expansion (1+x)^n On the basis of above information answer the following question: a/(a+b), b/(b+c), c/(c+d) are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Let a,b,c,d be the four consecutive coefficients of the binomial expansion (1+x)^n On the basis of above information answer the following question: a/(a+b), b/(b+c), c/(c+d) are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If (b+c)/(a+d)= (bc)/(ad)=3 ((b-c)/(a-d)) then a,b,c,d are in (A) H.P. (B) G.P. (C) A.P. (D) none of these

If (b+c)/(a+d)= (bc)/(ad)=3 ((b-c)/(a-d)) then a,b,c,d are in (A) H.P. (B) G.P. (C) A.P. (D) none of these

If a ,b ,c ,d are in G.P. prove that: (a b-c d)/(b^2-c^2)=(a+c)/b