Home
Class 8
MATHS
(-8b^(2)+4b-8)+(-2b^(2)-5b-1)...

`(-8b^(2)+4b-8)+(-2b^(2)-5b-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of a and b, if A=B,where A=[{:(a+4,3b),(8,-6):}] "and" B=[{:(2a +2,b^(2)+2),(8,b^(2)-5b):}]

If 4(a+2)^(2)-9a+2(2a^(2)-1)=4(b+2)^(2)-9b+2(2b^(2)-1)=15 where a,b in R and a>b then find the value of 8(a-b)

What is (1)/(a-b) -(1)/(a+b) -(2b)/(a^(2)+b^(2))-(4b^(3))/(a^(4)+b^(4)) -(8b^(7))/(a^(8)-b^(8)) equal to ?

Suppose a^(2) = 5a - 8 and b^(2) =5b - 8 , then equation whose roots are (a)/(b) and (b)/(a) is

If (4b^(2)+(1)/(b^(2)))=2, then (8b^(3)+(1)/(b^(3)))=? (a) 0 (b) 1 (c) 2 (d) 5

If [(a+4, 3b),(8 , -6)] = [(2a+2, b^2 +2), (8, b^2 - 5b)] , find the values of a and b.

If a,b,c are real numbers such that a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2) is equal to

If ST and SN are the lengths of subtangents and subnormals respectively to the curve by^(2)=(x+2a)^(3). then (ST^(2))/(SN) equals (A)1 (B) (8b)/(27) (C) (27b)/(8) (D) ((4b)/(9))

Let's express the following in the product from using formula. (a^2 + b^2) (a^2 - b^2) (a^4 + b^4) (a^8 + b^8)

The factors 8(a-2b)^(2)-2a+4b-1= are