Home
Class 11
MATHS
If the lines x/1=y/2=z/3,(x-1)/3=(y-2)/-...

If the lines `x/1=y/2=z/3,(x-1)/3=(y-2)/- 1=(z-3)/4"and"(x+k)/3=(y-1)/2=(z-2)/h` are concurrent then

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines x/1=y/2=z/3 and (x-1)/(-2)=(y-2)/(-4)=(z-3)/(6)are

If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) and (2x+1)/(3)=(y-1)/(1)=(z-2)/(1) are concurrent, then the value of 2h-3k is equal to

If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) and (2x+1)/(3)=(y-1)/(1)=(z-2)/(1) are concurrent, then the value of 2h-3k is equal to

The lines x/1=y/2=z/3 and (x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6) are

The lines x/1=y/2=z/3 and (x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6) are

Show that the lines (x-1)/2=(y-3)/-1=(z)/-1 and (x-4)/3=(y-1)/-2=(z+1)/-1 are coplanar.

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if