Home
Class 9
MATHS
If sum(s=1)^n{sum(r=1)^s r}=a n^3+b n^2...

If `sum_(s=1)^n{sum_(r=1)^s r}=a n^3+b n^2+C n` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r "^rC_s , then f(3) =

If f(n)=sum_(s=1)^(n)sum_(r=s)^(n)C_(r)^(r)C_(s), then f(3)=

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

If sum_(r=1)^(n)r(r+1)+sum_(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b,cinN) then

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.