Home
Class 12
MATHS
[hline multicolumn2c|" Column - I ",mult...

[hline multicolumn2c|" Column - I ",multicolumn2c" Column - II "],[hline" (A) "," If "y=2|x-2|+3|x+1|," then "," (P) ",y={[-5x+1,x<-1],[x+7]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (x, y) be such that sin^(-1)(ax)+cos^(-1)(y)+cos^(-1)(bxy)=pi//2 . Match the statements in column I with statements in column II. {:("Column I", "Column II"), ("A) If a = 1 and b = 0, then (x, y)", "p) lies on the circle "x^(2)+y^(2)=1), ("B) If a = 1 and b = 1, then (x, y)", "q) lies on "(x^(2)-1)(y^(2)-1)=0), ("C) If a = 1 and b = 2, then (x, y)", "r) lies on y = x"), ("D) If a = 2 and b = 2, then (x, y)", "s) lies on "(4x^(2)-1)(y^(2)-1)=0):}

Match the value of x in column II where derivative of the function in column I is negative. Column I Column II y=|x^2-2|x|| p. (1,2) y=|(log)_e|x|| q. (-3,-2) y=x[x/2],w h e r e[dot] represent r. (-1,0) y=|sinx| s. (0,1)

Let f(x)=x+1/xa n dg(x)=(x+1)/(x+2) Match the composite function given in Column I with respective domains given in Column II Column I, Column II fog(x) , p. R-{-2,-5/3} gof(x) , q. R-{-1,0} fof(x) , r. R-{0} gog(x) , s. R-{-2,-1} , t R-(-1}

Consider the lines L_1:(x-1)/2=y/(-1)=(z+3)/1,L_2:(x-4)/1=(y+3)/1=(z+3)/2 and the planes P_1:7x+y+2z=3,P_2:3x+5y-6z=4. Let a x+b y+c z=d be the equation of the plane passing through the point match Column I with Column II. Column I, Column II a= , p. 13 b= , q. -3 c= , r. 1 d= , s. -2

Consider the lines L_1:(x-1)/2=y/(-1)=(z+3)/1,L_2:(x-4)/1=(y+3)/1=(z+3)/2 and the planes P_1:7x+y+2z=3,P_2:3x+5y-6z=4. Let a x+b y+c z=d be the equation of the plane passing through the point match Column I with Column II. Column I, Column II a= , p. 13 b= , q. -3 c= , r. 1 d= , s. -2

Consider the lines L_1:(x-1)/2=y/(-1)=(z+3)/1,L_2:(x-4)/1=(y+3)/1=(z+3)/2 and the planes P_1:7x+y+2z=3,P_2:3x+5y-6z=4. Let a x+b y+c z=d be the equation of the plane passing through the point match Column I with Column II. Column I, Column II a= , p. 13 b= , q. -3 c= , r. 1 d= , s. -2

The equation of the line through the intersection of the lines 2x - 3y=0 and 4x -5y =2 and {:("Column - I","Column - II"),("(i) through the point (2, 1) is","(a)" (2x - y =4)),("(ii) perpendicular to the line" x + 2y + 1 =0 "is" , "(b)" x+y -5 =0),("(iii) parallel to the line" 3x - 4y + 5=0 "is","(c)" x-y -1 =0),("(iv) equally inclined to the axis is","(d)" 3x-4y-1 =0):}