Home
Class 12
MATHS
" If "a,b,c" are the "p^(th),q^(th),r^(t...

" If "a,b,c" are the "p^(th),q^(th),r^(th)" terms of an H.P.,then value of determinant "|[bc,ca,ab],[p,q,r],[1,1,1]|" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are the p^(th),q^(th),r^(th) terms in H.P.then det[[ca,q,1ab,r,1]]=

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

If a^(-1), b^(-1), c^(-1) are p^(th),q^(th) and r^(th) terms of an AP then the value of |(bc,ca,ab),(p,q,r),(1,1,1)| is

If a b c are the p^(th),q^(th) and r^(th) terms of an AP then prove that sum a(q-r)=0

If a,b,c are p^(pt),q^(th) and r^(th) terms of an A.P., find the value of |(a,b,c),(p,q,r),(1,1,1)| .

If a,b,c are the p^(th),q^(th),r^(th) terms in H.P. then |{:(bc,p,1),(ca,q,1),(ab,r,1):}|=

If a,b,c are respectively the p^(th),q^(th),r^(th) terms of an A.P.,then prove that a(q-r)+b(r-p)+c(p-q)=0

If p^(th), q^(th), r^(th) terms of a G.P are a,b,c then Sigma (q-r) log a=