Home
Class 12
MATHS
" If "x=(e^(t)+e^(-t))/(2)" and "y=(e^(t...

" If "x=(e^(t)+e^(-t))/(2)" and "y=(e^(t)-e^(-t))/(2)," then prove that "(dy)/(dx)=(x)/(y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2 , then dy/dx=

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)