Home
Class 12
MATHS
5.tan^(-1)(sqrt(1+x^(2))-1)/(x)*x!=1...

5.tan^(-1)(sqrt(1+x^(2))-1)/(x)*x!=1

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

Write each of the following in the simplest form: tan^(-1){(sqrt(1+x^(2))+1)/(x)},x!=0 (ii) *tan^(^^)(-1)sqrt((a-x)/(a+x)),1backslash-a

Differentiate the following functions with respect to x:tan^(-1){(sqrt(1+x^(2))+1)/(x)},x!=0 (ii) cot^(-1){sqrt(1+x^(2))+x}

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =