Home
Class 12
MATHS
" 137.If "x=sin t" and "y=sin pt," then ...

" 137.If "x=sin t" and "y=sin pt," then show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1) x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x = sint and y= sin (pt) , then show that (1-x^(2) ) (d^2y)/( dx^2) - x (dy)/( dx) + p^(2) y =0 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0