Home
Class 12
MATHS
" (i) "tan^(-1)(x-1)/(x+1)+tan^(-1)(2x-1...

" (i) "tan^(-1)(x-1)/(x+1)+tan^(-1)(2x-1)/(2x+1)=tan^(-1)(23)/(36)

Promotional Banner

Similar Questions

Explore conceptually related problems

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Solve equation "tan"^(-1) (x-1)/(x+1) ="tan"^(-1) (2x-x)/(2x+1) = "tan"^(-1) 23/36

Solve : tan ^(-1) ""(x-1)/(x+1) + tan^(-1) ""(2x -1)/(2x+1)= tan ^(-1) "" (23)/(36)