Home
Class 12
MATHS
y=cos^(-1)((2x)/(1+x^(2)))-1<x<1...

y=cos^(-1)((2x)/(1+x^(2)))-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= cos^(-1)((2x)/(1+x^(2))) , then (dy)/(dx) is -

tan[1/2sin^(-1)((2x)/(1+x^(2)))-1/2cos^(-1)((1-y^(2))/(1+y^(2)))]=

If y = "cos^(-1)((2x)/(1 + x^2)) , then (dy)/(dx) is

Find the derivative of y=cos^(-1)((1-x^2)/(1+x^2)) , 0

tan[1/2Sin^(-1)((2x)/(1+x^(2)))-1/2Cos^(-1)((1-y^(2))/(1+y^(2)))]=

tan{(1/2)sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-y^(2))/(1+y^(2)))} .

Find quad quad (dy)/(dx) in the following: y=cos^(-1)((1-x^(2))/(1+x^(2))),0

If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y_(1)=

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

tan [(1) / (2) (sin ^ (- 1) ((2x) / (1 + x ^ (2))) + cos ^ (- 1) ((1-y ^ (2)) / ( 1 + y ^ (2)))]