Home
Class 12
MATHS
If x^(y)=e^(x-y) then prove that (dy)/(d...

If `x^(y)=e^(x-y)` then prove that `(dy)/(dx)=(logx)/((1+logx)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If e^(x-y)=x^y then prove that dy/dx=logx/[logex]^2