Home
Class 10
MATHS
(1)/(2)+(1)/(4)+(1)/(8)+cdots+(1)/(2^(n)...

(1)/(2)+(1)/(4)+(1)/(8)+cdots+(1)/(2^(n))=(y-1)/(2^(n))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: (1)/(2)+(1)/(4)+(1)/(8)++(1)/(2^(n))=1-(1)/(2^(n))

For all ninNN , prove by principle of mathematical induction that, (1)/(2)+(1)/(4)+(1)/(8)+ . . .+(1)/(2^(n))=1-(1)/(2^(n)) .

(1)/(2)+(1)/(4)+(1)/(8)+(1)/(16)+......+(1)/(2^(n))=1-(1)/(2^(n))

For a positive integer n let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)cdots+(1)/((2^(n))-1). Then a(100) 100c.a(200)<=100d.a(200)<=100

If S_(1), S_(2),cdots S_(n) , ., are the sums of infinite geometric series whose first terms are 1, 2, 3,…… ,n and common ratios are (1)/(2) ,(1)/(3),(1)/(4),cdots,(1)/(n+1) then S_(1)+S_(2)+S_(3)+cdots+S_(n) =

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

(1)/(n)+(1)/(n+1)+(1)/(n+2)++(1)/(2n-1)=1-(1)/(2)+( 1)/(3)-(1)/(4)++(1)/(2n-1)

prove that (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) for all natural numbers,n>=1(1-(1)/(n^(2)))=(n+1)/(2n)

If S denotes the sum to infinity and S_(n) , denotes the sum of n terms of the series 1+(1)/(2)+(1)/(4) + (1)/(8)+ cdots , such that S-S_(n) lt (1)/(100) , then the least value of n is