Home
Class 11
MATHS
sqrt(log(10)^(-x))=log(10)sqrt(x^(2))...

sqrt(log_(10)^(-x))=log_(10)sqrt(x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2)log_(10)x+3log_(10)sqrt(2+x)=log_(10)sqrt(x(x+2))+2

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

Value of x satifying (log)_(10)sqrt(1+x)+3(log)_(10)sqrt(1-x)=(log)_(10)sqrt(1-x^(2))+2 is a.0

Value of x satifying (log)_(10)sqrt(1+x)+3(log)_(10)sqrt(1-x)=(log)_(10)sqrt(1-x^2)+2 is a. 0ltxlt1 b. -1ltxlt1 c. -1ltxlt0 d. None of this

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

Solve sqrt(log(-x)) = log sqrt(x^(2)) (base is 10).

Solve sqrt(log(-x)) = log sqrt(x^(2)) (base is 10).