Home
Class 12
MATHS
If I=int(-2pi)^(5pi) cot^-1(tanx)dx. The...

If `I=int_(-2pi)^(5pi) cot^-1(tanx)dx`. Then, `2I/pi^2` is ….

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

I_(n)=int_(pi/4)^(pi/2)(cot^(n)x)dx , then :

If I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx then I is

int_(pi//4)^(pi//2)cot^(2)x dx =

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

int_(0)^((pi)/(2))log(tanx)dx

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these