Home
Class 12
MATHS
If alpha, beta, gamma are the roots of ...

If `alpha, beta, gamma ` are the roots of the equation `x^(3) - ax^(2) + bx -c = `0 , then `sum alpha^(2) (beta + gamma)= `

A

ab - 3c

B

`(ab - 3c)/(c )`

C

`(b^(2) - 2ac)/(c^(2))`

D

`(a^(2) - 2b)/(c^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum alpha^(2) beta^(2) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha, beta, gamma are roots of the equation x^(3) - 6x^(2) + 11x + 6 = 0 , then sum alpha^(2) beta + sum alpha beta^(2) =

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha, beta, gamma are the roots of the equation x^(3)+ax^(2)+bx+c=0 , then alpha^(-1)+beta^(-1)+gamma^(-1) is equal to