Home
Class 12
MATHS
The locus of a point P(x, y) satisfying ...

The locus of a point P(x, y) satisfying the equation `sqrt((x -2)^(2) + y^(2)) + sqrt( (x + 2)^(2) + y^(2)) = 4 `, is

A

an ellipse

B

a parabola

C

a line segment

D

a circle

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse given by the locus of the point P(x, y) satisfying the equation sqrt((x-2)^(2)+(y-1)^(2))+sqrt((x+2)^(2)+(y-1)^(2))=8 is

The equation sqrt((x-2)^(2)+y^(2))+sqrt((x+2)^(2)+y^(2))=4 represents

Point P(x,y) satisfying the equation sin^(-1)x+cos^(-1)y+cos^(-1)(2xy)=(pi)/2 lies on

Point P(x, y) satisfying the equation Sin^(-1)x+Cos^(-1)y+Cos^(-1)(2xy)=pi/2 lies on

The equation | sqrt( (x- 2) ^(2) + (y-1) ^(2)) - sqrt( (x+ 2)^(2) +y^(2)) =c will represent a hyperbola if

If y = sqrt(sec 2x ) then y _(2) =

The number of points P(x,y) lying inside or on the circle x^(2) + y^(2) = 9 and satisfying the equation tan^(4) x + cot^(4) x + 2 = 4 sin^(2) y , is

If y = log (x + sqrt(x ^(2) + 1)) then y _(2)(1) =

If y = sqrt(cos 2x ) then y (d ^(2) y )/(dx ^(2)) + 2y ^(2) =