Home
Class 12
MATHS
If the circle x^(2) + y^(2) + 6x - 2y + ...

If the circle `x^(2) + y^(2) + 6x - 2y + k = 0 ` bisects the circumference of the circle `x^(2) + y^(2) +2x - 6y - 15 = 0 `, then k =

A

21

B

`-21`

C

`-23`

D

23

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x^(2) + y^(2) + 4x - 6y - c = 0 bissects the circumference of the circle x^(2) + y^(2) - 6x + 4y - 12 = 0 , then c =

If the circle x^(2) + y^(2) + 4x -22y + c = 0 bisects the circumference of the circle x^(2) + y^(2) - 2x + 8y - d = 0 , then c + d =

The value of k for which the circle x^(2) + y^(2) -4x + 6y +3 =0 will bisect the circumferece of the circle x^(2) +y^(2) +6x -4y +k=0 is

Show that the circle x^2+y^2+4x+4y-1=0 bisects the circumference of the circle x^2+y^2+2x-3=0 .

If the circle x^(2) + y^(2) + 8x - 4y + c = 0 touches the circle x^(2) + y^(2) + 2x + 4y - 11 = 0 externally and cuts the circle x^(2) + y^(2) - 6x + 8y + k = 0 orthogonally then k =

If the circle x^(2) +y^(2) -6x -8y+( 25-a^(2) ) =0 touches the axis of x, then a equals.