Home
Class 12
MATHS
If e(1), e(2) are respectively the eccen...

If `e_(1), e_(2)` are respectively the eccentricities of the curves 9`x^(2) - 16y^(2) - 144 = 0` and
`9x^(2) - 16y^(2) + 144 = 0` then `(e_(1)^(2)e_(2)^(2))/(e_(1)^(2)+e_(2)^(2))`=

A

`sqrt(2)`

B

1

C

`sqrt(3)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The eccentricity of the ellipse 9x^(2)+ 16y^(2)= 144 is

The eccentricity of the hyperbola 9x^(2) -16y^(2) =144 is

The eccentricity of the ellipse x^(2)/9+y^(2)/16=1 is

The eccentricity of the ellipse 9x^(2) + 5y^(2) - 18x - 2y - 16 = 0 is

The eccentricity of the hyperbola 9x^(2) -16y^(2) +72 x- 32 y- 16 =0 is

If e and e^1 are the eccentricities of the ellipse 5x^(2)+9y^(2)=45 and the hyperbola 5x^(2)-4y^(2)=45" then "e e^(1)=

int(e^(x)-e^(-2x))/(e^(2x)+e^(-2x))dx