Home
Class 12
MATHS
If y = e^(sin^ [-1] x), then (1 - x^(2))...

If y = `e^(sin^ [-1] x),` then `(1 - x^(2))y_(2) - xy_(1)` =

A

0

B

1

C

y

D

2y

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin(m sin^(-1)x) , then (1-x^(2))y_(2) - xy_(1) is equal to (Here, y_(n) denotes (d^(n)y)/(dx^(n)) )

If y = sin (7 Sin ^(-1) x) then (1-x ^(2)) y _(2) - xy _(1)=

If y=((sin^(-1)x)^(2))/(2) , then (1-x^(2))y_(2)-xy_(1)=

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.

If y =e ^( m Cos ^(-1)x) then show that (1- x^(2)) y _(2) - xy_(1) -m^(2) y =0.

y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =

If y = Tan ^(-)x then show that (1 + x ^(2)) y _(2) + 2xy _(1) = 0

If y = xe ^(- 1//x) then x ^(3) y _(2) - xy _(1) +y=