Home
Class 12
MATHS
int(e^(-1))^(e^(2))|(logx)/(x)|dx=...

`int_(e^(-1))^(e^(2))|(logx)/(x)|dx=`

A

`(2)/(5)`

B

2

C

5

D

`(5)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e)((logx)^(3))/(x)dx=

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(0)^(1) x e^(-x^(2))dx

int_(1)^(e)(ln x)/(x^(2))dx=

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=

int (e^(x))/(e^(x//2)-1)dx=

int (e^(x)(x^(2)+1))/((1+x)^(2))dx=