Home
Class 12
MATHS
If a,b and c are the roots of x^(3) +qx+...

If a,b and c are the roots of `x^(3) +qx+r=0`, then `(a-b)^(2) +(b-c)^(2) +(c-a)^(2)`=

A

`-6q`

B

`-4q`

C

6q

D

4q

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of ax^(2) + bx + c = 0 are 2, (3)/(2) then (a+b+c)^(2)

If a=c=4b , then the roots of ax ^(2) + 4 bx + c =0 are

The roots of the equation ( a-b) x^2 +(b-c) x+ (c-a) =0 are

In DeltaABC , if the sides a,b,c are the roots of x^(3)-11x^(2)+38x-40=0 then the value of (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=

Assertion (A) : If alpha, beta are the roots of ax^(2)+bx+c=0 then ((alpha)/(alphabeta+b))^(3)- ((beta)/(aalpha+b))^(3)=0 Reason (R) : If a,B are the roots of ax^(2)+bx+c=0 then (alpha)/(alphabeta+b)= (beta)/(aalpha+b)

If a,b,c are roots of x^3-px^2+qx-r=0 and r ne 0, then find (1)/(a^2)+(1)/(b^2)+(1)/(c^2) in terms of p,q,r.

If sec theta + tan theta=1 , then root of the equation (a-2b+c)x^(2) + (b-2c+a)x + (c-2a+b)=0 is:

If the roots ax^(2)+bx+c=0 are (3)/(2),(4)/(3) then (a+b+c)^(2) =

IF a+b+c=0 then (a^2+b^2+c^2)/((a-b)^2+(b-c)^2+(c-a)^2) =

If 1,2,3 and 4 are the roots of the eqaution x^(4) + ax^(3) + b x^(2) + cx + d = 0, then a + 2b + c =