Home
Class 12
MATHS
If (x-(pi)/(3)), cos x cos (x+(pi)/(3)) ...

If `(x-(pi)/(3)), cos x cos (x+(pi)/(3))` are in a harmonic progression, then cos x=

A

`(3)/(2)`

B

1

C

`(sqrt(3))/(2)`

D

`sqrt((3)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=y cos((2pi)/(3))=z cos ((4pi)/(3)) then xy+yz+zx=

If cos (x-y) , cos x , cos (x+y) are three distinct numbers which are in harmonic progression and cos x ne cos y , " then " 1+ cos y =

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Find the period of cos x sin (x - (2pi)/(3))

int_(0)^(pi) (cos x + |cos x|)dx=

If x + y = (2pi)/(3) and cos x + cos y = (sqrt(3))/(2) l find x and y.

( sin x - cos x)^(2) + cos^(2) ((pi)/(4) - x) in

int_(-pi)^(pi) x^(3) Cos x dx=