Home
Class 12
MATHS
If [x] denotes the greatest integer le x...

If [x] denotes the greatest integer `le x`, then `underset(n rarr oo)lim(1)/(n^(3)){[1^(2)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]}=`

A

`(x)/(2)`

B

`(x)/(3)`

C

`(x)/(6)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

If [.] denotes the greatest integer functon, then Lt_(n to oo)([1^(3)x]+[2^(3)x]+....+..[n^(3)x])/(n^(4))

If [x] is the greatest integer function, then underset (x to 2^+)lim ([x]^3/3-[x/3]^3)=

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(x to oo)lim (3x^(3)+x^(2)-1)/(x^(2)-x+7)=

If [x] represents greatest integer le x then int_(1)^(3//2) [2x +1]dx=

underset(n to oo)lim (3^(x+1)+4)/(3^(x+2)+4)=

Lt_(x to oo) (1)/(n^(3)) sum_(k=1)^(n)[k^(2)x]=