Home
Class 11
MATHS
The equation of a circle of radius 1 tou...

The equation of a circle of radius 1 touching the circles `x^2+y^2-2|x|=0` is `x^2+y^2+2sqrt(2)x+1=0` `x^2+y^2-2sqrt(3)y+2=0` `x^2+y^2+2sqrt(3)y+2=0` `x^2+y^2-2sqrt(2)+1=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of a circle of radius 1 touching the circles x^2 + y^2 - 2 |x| = 0 is: (A) x^2 + y^2 + 2sqrt(3x) - 2 = 0 (B) x^2 + y^2 - 2sqrt(3)y+2=0 (C) x^2 + y^2 + 2sqrt(3) y + 2 = 0 (D) x^2 + y^2 + 2 sqrt(3) x + 2 = 0

Equation of a circle of radius 2 and touching the circles x^(2)+y^(2)-4|x|=0 is x^(2)+y^(2)+2sqrt(3)y+2=0x^(2)+y^(2)+4sqrt(3)y+2=0x^(2)+y^(2)-4sqrt(3)y+8=0 none of these

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0

The midpoint of the chord y=x-1 of the circle x^(2)+y^(2)-2x+2y-2=0 is

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

Find the equation of line joining the center of the circles x^(2)+y^(2)-2x+4y+1=0 and 2x^(2)+2y^(2)-2y+4x+1=0

The equation to the normal to the circle x^(2)+y^(2)-2x-2y-2=0 at the point (3,1) on it is

The equation of a circle which cuts the three circles x^(2)+y^(2)+2x+4y+1=0,x^(2)+y^(2)-x-4y+8=0 and x^(2)+y^(2)+2x-6y+9=0 orthogonlly is

The length of the common chord of the circles x^(2)+y^(2)-2x-1=0 and x^(2)+y^(2)+4y-1=0 , is