Home
Class 11
PHYSICS
IF c1,c2,c3……are random speeds of gas mo...

IF `c_1,c_2,c_3`……are random speeds of gas molecules at a certain moment then average velocity `c_(av)=(c_1+c_2+c_3+.......c_n)/n` are root mean square speed of gas molecules
`c_(rms)=sqrt((c_1^2+c_2^2+c_3^2+......+c_n^2)/n)=c`
Further `c^2 prop T or c prop sqrt T`
At0K, c=0 i.e.,molecular motion stops.
KE per mole of hydrogen at `100^@C` (given `R=8.31 J.mol^-1,K^-1`) is

A

4946J

B

4649J

C

4496J

D

4699J

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • KINETIC THEORY OF GASES

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER(Integer answer type)|5 Videos
  • KINETIC THEORY OF GASES

    CHHAYA PUBLICATION|Exercise Examinations Archive with Solutions(WBCHSE)|19 Videos
  • KINETIC THEORY OF GASES

    CHHAYA PUBLICATION|Exercise ENTRANCE CORNER(Multiple correct answer type)|5 Videos
  • HYDROSTATICS

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|1 Videos
  • MEASUREMENT AND DIMENSION OF PHYSICAL QUANTITY

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|18 Videos

Similar Questions

Explore conceptually related problems

IF c_1,c_2,c_3 ……are random speeds of gas molecules at a certain moment then average velocity c_(av)=(c_1+c_2+c_3+.......c_n)/n are root mean square speed of gas molecules c_(rms)=sqrt((c_1^2+c_2^2+c_3^2+......+c_n^2)/n)=c Further c^2 prop T or c prop sqrt T At0K, c=0 i.e.,molecular motion stops. IF three molecules have velocities 0.5 km.s^-1,1 km.s^-1 and 2 km.s^-1 the ratio of rms speed and average velocity is

IF c_1,c_2,c_3 ……are random speeds of gas molecules at a certain moment then average velocity c_(av)=(c_1+c_2+c_3+.......c_n)/n are root mean square speed of gas molecules c_(rms)=sqrt((c_1^2+c_2^2+c_3^2+......+c_n^2)/n)=c Further c^2 prop T or c prop sqrt T At0K, c=0 i.e.,molecular motion stops. Temperature of a certain mass of a gas is doubled,The rms speed of its molecules becomes n times where n is

IF c_1,c_2,c_3 ……are random speeds of gas molecules at a certain moment then average velocity c_(av)=(c_1+c_2+c_3+.......c_n)/n are root mean square speed of gas molecules c_(rms)=sqrt((c_1^2+c_2^2+c_3^2+......+c_n^2)/n)=c Further c^2 prop T or c prop sqrt T At0K, c=0 i.e.,molecular motion stops. At what temperature when pressure remains constant, will the rms speed of the gas molecules be increased by 10% of the rms speed at STP?

If c_(0),c_(1),c_(2)..........c_(n) denote the co-efficients in the expansion of (1+x)^(n) then the value of c_(1)+2c_(2)+3c_(3)+.......+nc_(n) is

Prove that c_(rms)=sqrt((2E)/(M)) [E=total kinetic energy of the molecules of 1 mol of a gas, M=molar mass of the gas, c_(rms)= root mean square velocity of gas molecule].

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

The value of the sum (.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+(.^(n)C_(3))^(2)+....+(.^(n)C_(n))^(2) is -

If C_r stands for nC_r , then the sum of the series (2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2] ,where n is an even positive integer, is