Home
Class 11
MATHS
If the conics whose equations are S1:(si...

If the conics whose equations are `S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0` `S_1:(sin^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0` intersect at four concyclic points, where `theta[0,pi/2],` then the correct statement(s) can be `h+h^(prime)=0` (b) `h-h^(prime)=0` `theta=pi/4` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the conics whose equations are S-=sin^(2)theta x^(2)+2hxy+cos^(2)theta y^(2)+32x+16y+19=0,S'-=cos^(2)theta x^(2)+2h'xy+sin^(2)theta y^(2)+16x+32y+19=0 intersect at four concyclic points,then,(where theta in R)h+h'=0(b)h=h'h+h'=1(d) none of these

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If (1+cos theta-i sin theta)(1+cos2 theta+i sin2 theta)=x+iy then x^(2)+y^(2)=

If x = 2 sin ^(2) theta and y = 2 cos^2 theta +1 then x + y is

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

if x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

Prove that y=(4sin theta)/((2+cos theta))-theta is an increasing function of theta in [0,(pi)/(2)]

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=2cos theta -cos 2theta ,y=2sin theta -sin 2theta ,then (dy)/(dx) =

The angle between the pair of straight lines y^(2)sin^(2)theta-xy sin theta+x^(2)(cos^(2)theta-1)=0 is