Home
Class 12
MATHS
Lt(ntooo)(1)/(n)sum(r=1)^(2n)(r)/(sqrt(n...

`Lt_(ntooo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=`

A

`1+sqrt5`

B

`-1+sqrt5`

C

`-1+sqrt2`

D

`1+sqrt2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-1)|6 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

Lt_(ntooo)sum_(r=0)^(n-1)(n)/(n^(2)+r^(2))=

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

Lt_(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqrt(n^(2)+n^(2)))}=

Lt_(ntooo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt((2n-1)))]=

Lt_(ntooo)sum_(r=0)^(n-1)(1)/(n+r)=

Lt_(ntooo)sum_(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

DIPTI PUBLICATION ( AP EAMET)-DEFINITE INTEGRATION-EXERCISE 1D
  1. Lt(ntooo)sum(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

    Text Solution

    |

  2. Lt(ntooo)sum(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

    Text Solution

    |

  3. Lt(ntooo)(1)/(n)sum(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

    Text Solution

    |

  4. Lt(ntooo)sum(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

    Text Solution

    |

  5. Lt(ntooo){(1)/(n+1)+(1)/(n+2)+......+(1)/(2n)}=

    Text Solution

    |

  6. Lt(ntooo)sum(r=0)^(n-1)(1)/(n+r)=

    Text Solution

    |

  7. Lt(ntooo){(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(3n)}=

    Text Solution

    |

  8. Lt(ntooo){(1)/(2n+1)+(1)/(2n+2)+(1)/(2n+3)+..........+(1)/(2n+n)}=

    Text Solution

    |

  9. Lt(ntooo)[(1)/(3n+1)+(1)/(3n+2)+............+(1)/(3n+n)]=

    Text Solution

    |

  10. Lt(ntooo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.......+(n)/(1-n^(2))]=

    Text Solution

    |

  11. Lt(ntooo){(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+.......+1/(n)}

    Text Solution

    |

  12. Lt(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

    Text Solution

    |

  13. Lt(ntooo)([1+4+9+......+n^(2)])/(n^(3))

    Text Solution

    |

  14. Lt(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^(9))/(n^(10))=

    Text Solution

    |

  15. Evaluate the limit . underset(n to 00)("Lt") (1+2^(4)+3^(4)+…….+n^(4...

    Text Solution

    |

  16. Lt(ntooo)sum(r=1)^(n)(1)/(n)e^(r//pi) is

    Text Solution

    |

  17. Lt(ntooo)[(1)/(1+n^(3))+(4)/(8+n^(3))+(9)/(27+n^(3))+.......+(1)/(2n)]...

    Text Solution

    |

  18. Lt(ntooo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+.........+(1)/(2...

    Text Solution

    |

  19. By the definition of the definite integral, the value of lim(ntooo)((...

    Text Solution

    |

  20. Lt(ntooo){(sqrt1+sqrt2+sqrt3+.........+sqrtn)/(nsqrtn)}

    Text Solution

    |