Home
Class 12
MATHS
By the definition of the definite integ...

By the definition of the definite integral, the value of `lim_(ntooo)((1^(4))/(1^(5)+n^(5))+(2^(4))/(2^(5)+n^(5))+(3^(4))/(3^(5)+n^(5))+............+(n^(4))/(n^(5)+n^(5)))`

A

`(1)/(5)log2`

B

`(1)/(4)log2`

C

`(1)/(3)log2`

D

`log2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1E|94 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-1)|6 Videos
  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1C|33 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Lt_(ntooo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+.........+(1)/(2n)]=

Evaluate the following define integrals as limit of sums : lim_(n rarr oo) (1^(4)+2^(4) +3^(4) +....+n^(4))/(n^(5))

Evaluate the limit . Lt_( n to oo) (1+2^(4)+3^(4)+…….+n^(4))/(n^(5))

(1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

Lt_(ntooo)([1+4+9+......+n^(2)])/(n^(3))

DIPTI PUBLICATION ( AP EAMET)-DEFINITE INTEGRATION-EXERCISE 1D
  1. Lt(n-oo)[(1)/(n^(3))+(2^(2))/(n^(3))+.........+(n^(2))/(n^(3))]=

    Text Solution

    |

  2. Lt(ntooo)([1+4+9+......+n^(2)])/(n^(3))

    Text Solution

    |

  3. Lt(ntooo)(1^(9)+2^(9)+3^(9)+.........+n^(9))/(n^(10))=

    Text Solution

    |

  4. Evaluate the limit . underset(n to 00)("Lt") (1+2^(4)+3^(4)+…….+n^(4...

    Text Solution

    |

  5. Lt(ntooo)sum(r=1)^(n)(1)/(n)e^(r//pi) is

    Text Solution

    |

  6. Lt(ntooo)[(1)/(1+n^(3))+(4)/(8+n^(3))+(9)/(27+n^(3))+.......+(1)/(2n)]...

    Text Solution

    |

  7. Lt(ntooo)[(1^(3))/(n^(4)+1^(4))+(2^(3))/(n^(4)+2^(4))+.........+(1)/(2...

    Text Solution

    |

  8. By the definition of the definite integral, the value of lim(ntooo)((...

    Text Solution

    |

  9. Lt(ntooo){(sqrt1+sqrt2+sqrt3+.........+sqrtn)/(nsqrtn)}

    Text Solution

    |

  10. Evaluate the limit. underset(n to 00)("lim") (sqrt(n+1)+sqrt(n+2)+…...

    Text Solution

    |

  11. Lt(ntooo)[(sqrt(n^(2)-1^(2)))/(n^(2))+sqrt(n^(2)-2^(2))/(n^(2))+(sqrt(...

    Text Solution

    |

  12. Lt(ntooo)[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt((2...

    Text Solution

    |

  13. Lt(ntooo){(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2)+2^(2)))+.......+(1)/(sqr...

    Text Solution

    |

  14. Lt(ntooo)[(n^(1//2))/(n^(3//2))+(n^(1//2))/((n+3)^(3//2))+(n^(1//2))/(...

    Text Solution

    |

  15. Lt(ntooo)(1)/(n){sin^(2)""(pi)/(2n)+sin^(2)""(2pi)/(2n)+..........+sin...

    Text Solution

    |

  16. Lt(ntooo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n)+......+sec^(2)...

    Text Solution

    |

  17. {:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2...

    Text Solution

    |

  18. Evaluate underset(n to oo)("lim")[(1+(1)/(n))(1+2/n)* * * (1+(n)/(n))...

    Text Solution

    |

  19. Evaluate the limit . underset(n to 00)("lim") [(1+(1)/(n^(2)))(1+(2^...

    Text Solution

    |

  20. lim(ntooo)(((n+1)(n+2)....3n)/(n^(2n)))^(1//n) is equal to

    Text Solution

    |