Home
Class 12
MATHS
A:int(0)^(pi//2)sin^(7)xdx=(16)/(35) R...

`A:int_(0)^(pi//2)sin^(7)xdx=(16)/(35)`
`R:int_(0)^(pi//2)sin^(n)xdx=(n-1)/(n).(n-3)/(n-2).(n-5)/(n-4)..........(2)/(3).1` if n is odd.

A

Both A and R are true R is the correct explanatino of A

B

Both A and R are true but R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUSTIONS) CHOOSE THE CORRECT ANSWER FROM THE ALTERNATIVES 1,2,3 OR 4 GIVEN (SET-3)|1 Videos
  • DE MOIVRE'S THEOREM

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET-4|3 Videos
  • DIFFERENTIAL EQUATIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise Exercise 2|15 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^(pi//2) sin^(n)xdx =int_(0)^(pi//2) cos^(n)x dx .

A:int_(0)^(pi//4)(tan^(6)x+tan^(4)x)dx=(1)/(5) R:int_(0)^(pi//4)(tan^(n)x+tan^(n-2)x)dx=(1)/(n-1)

int_(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

int_(pi//2)^(pi//2)e^(sin^(2)x).sin^(2n+1)xdx=

Evaluate : int_(0)^((n)/2)sin^(6)xxcos^(4)xdx .

For n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=

The value of int_(0)^(pi)sin^(n)xcos^(2m+1)xdx is

Lt_(ntooo)(1)/(n){sin^(2)""(pi)/(2n)+sin^(2)""(2pi)/(2n)+..........+sin^(2)""(npi)/(2n)}