Home
Class 12
MATHS
Differential coefficient of tan^(- 1)(x/...

Differential coefficient of `tan^(- 1)(x/(1+sqrt(1-x^2)))` with respect to `sin^(-1) x` is (A)`1/2` (B)`1` (C)`2` (D)`3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

DIfferential coefficient of tan^-1(x/(1+sqrt(1-x^2)))w.r.t sin^-1x is

DIfferential coefficient of tan^-1(x/(1+sqrt(1-x^2)))w.r.t sin^-1x is

Differentiate sin ^(-1)(2x sqrt(1-x^2)) with respect to sin^-1 x.

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate tan^(-1)(x/sqrt(1-x^2)) with respect to sin^(-1)((2x)*sqrt(1-x^2)),

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^-1((sqrt(1+x^2)-1)/x) with respect to tan^-1 x