Home
Class 12
MATHS
" 10.Show that "int(0)^(1/sqrt(2))(sin^(...

" 10.Show that "int_(0)^(1/sqrt(2))(sin^(-1)x)/((1-x^(2))^((3)/(2)))dx=(pi)/(4)-(1)/(2)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^(1//2)(x sin^(-1)x)/(sqrt(1-x^(2)))dx = (1)/(2)-(sqrt(3))/(12)pi

int_(0)^((1)/(2))(xsin^(-1)x)/(sqrt(1-x^(2)))dx=(1)/(2)(1-(pi)/(2sqrt(3)))

int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-2sin((x)/(2)))dx

int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

Show that int_(0)^(1)(dx)/((1+x^(2))sqrt(2+x^(2))) = (pi)/(6)

Show that int_(0)^(1//3)(dx)/((1+x^(2))sqrt(1-x^(2))) = (pi)/(4sqrt(2))

Show that int_(0)^(1//2) (dx)/((1-2x^(2))sqrt(1-x^(2))) = (1)/(2) log(2+sqrt(3))

int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)