Home
Class 12
MATHS
If bar(i), bar(j), bar(k) are unit vecto...

If `bar(i), bar(j), bar(k)` are unit vectors along the positive directions of the coordinate axes, then shown that the four points `4 bar(i) + 5 bar(j) + bar(k), - bar(j) - bar(k), 3 bar(i) +9 bar(j) + 4 bar(k) and - 4 bar(i) + 4 bar(j) + 4 bar( k)` are coplanar

Text Solution

Verified by Experts

The correct Answer is:
`bar(PQ),bar(PR),bar(PS)`
Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|14 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

Compute [bar(i) - bar(j). bar(j) - bar(k). bar(k) -bar(i)] .

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.

Find the vector equation of the plane passing through the points bar(i)-2bar(j)+5bar(k), -5bar(j)-bar(k), -3bar(i)+5bar(j) .