Home
Class 12
MATHS
Prove that the following four points are...

Prove that the following four points are coplanar.
i) `4bar(i)+5bar(j)+bar(k), -bar(j)-bar(k), 3bar(i)+9bar(j)+4bar(k), -4bar(i)+4bar(j)+4bar(k)`
ii) `-bar(a)+4bar(b)-3bar(c), 3bar(a)+2bar(b)-5bar(c), -3bar(a)+8bar(b)-5bar(c), -3bar(a)+2bar(b)+bar(c)" ("bar(a), bar(b), bar(c)` are non-coplanar vectors)
iii) `6bar(a)+2bar(b)-bar(c), 2bar(a)-bar(b)+3bar(c), -bar(a)+2bar(b)-4bar(c), -12bar(a)-bar(b)-3bar(c)" ("bar(a), bar(b), bar(c)` are non-coplanar vectors)

Text Solution

Verified by Experts

The correct Answer is:
`bar(PQ),bar(PR),bar(PS)`
Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|14 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

If bar(a), bar(b), bar(c) are non coplanar then the vectors bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), bar(a)-3bar(b)+5bar(c) are

Find a linear relation between the vectors bar(a)+3bar(b)+4bar(c), bar(a)-2bar(b)+3bar(c), bar(a)+5bar(b)-2bar(c) and 6bar(a)+14bar(b)+4bar(c)" where "bar(a), bar(b), bar(c) are non coplanar vectors.

Show that the following vectors are linearly dependent bar(a)-2bar(b)+bar(c), 2bar(a)+bar(b)-bar(c), 7bar(a)-4bar(b)+bar(c) where bar(a), bar(b), bar(c) are non-coplanar vectors

If bar(a), bar(b), bar(c) are non coplanar, show that the vectors bar(a)+2bar(b)-bar(c), 2bar(a)-3bar(b)+2bar(c), 4bar(a)+bar(b)+3bar(c) are linearly independent.

bar(a) , bar(b), bar (c ) , are non-coplanar vectors, Prove that the following four points are coplanar. 6bar(a) + 2bar(b) - bar(c ), 2bar(a) - bar(b) + 3bar(c ), -bar(a) + 2bar(b)-4bar(c ), -12bar(a)-bar(b)-3bar(c ) .

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that the vectors 5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c) are coplanar.

If bar(a)=2bar(i)+bar(j)-bar(k), bar(b)=-bar(i)+2bar(j)-4bar(k), bar(c )=bar(i)+bar(j)+bar(k) then find (bar(a)xxbar(b)).(bar(b)xxbar(c )) .