Home
Class 12
MATHS
If bar(a), bar(b), bar(c) are non coplan...

If `bar(a), bar(b), bar(c)` are non coplanar vectors, then test for the collinearity of the following points whose position vectors are given.
i) `bar(a)-2bar(b)+3bar(c), 2bar(a)+3bar(b)-4bar(c), -7bar(b)+10bar(c)`
ii) `3bar(a)-4bar(b)+3bar(c), -4bar(a)+5bar(b)-6bar(c), 4bar(a)-7bar(b)+6bar(c)`
iii) `2bar(a)+5bar(b)-4bar(c), bar(a)+4bar(b)-3bar(c), 4bar(a)+7bar(b)-6bar(c)`

Text Solution

Verified by Experts

The correct Answer is:
`bar(PQ)=tbar(PR)`
Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|14 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|7 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

Show that the following vectors are linearly dependent bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), -bar(b)+2bar(c)

S.T the points whose P.V are bar(a) - 2bar(b) + 3bar(c ), 2bar(a)+3bar(b)-4bar(c ), -7bar(b)+10bar(c ) are collinear.

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

bar(a) , bar(b), bar (c ) , are non-coplanar vectors, Prove that the following four points are coplanar. 6bar(a) + 2bar(b) - bar(c ), 2bar(a) - bar(b) + 3bar(c ), -bar(a) + 2bar(b)-4bar(c ), -12bar(a)-bar(b)-3bar(c ) .

bar(a), bar(b), bar(c) are non-coplanar vectors. Prove thate the following four points are coplanar - bar(a) + 4 bar(b) - 3 bar(c) , 3 bar(a) + 2 bar(b) - 5 bar(c) - 3 bar(a) + 8 bar(b) - 5 bar(c) , - 3 bar(a) + 2 bar(b) + bar(c)