Home
Class 12
MATHS
Show that the triangle formed by the vec...

Show that the triangle formed by the vectors `3bar(i)+5bar(j)+2bar(k), 2bar(i)-3bar(j)-5bar(k), -5bar(i)-2bar(j)+3bar(k)` is equilateral.

Promotional Banner

Topper's Solved these Questions

  • ADDITION OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|14 Videos
  • APPLICATIONS OF DERIVATIVES

    SRISIRI PUBLICATION|Exercise 10.5 MAXIMA AND MINIMA - VSAQ . SAQ (SPQ)|1 Videos

Similar Questions

Explore conceptually related problems

If the triangle formed by the vectors 3 bar(i) + 5 bar(j) + 2 bar(k) , 2 bar(i) - 3 bar(j) - 5 bar(k) and - 5 bar(i) - 2 bar(j) + 3 bar(k) equilateral ?

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

Write the position vector of the centroid of the triangle formed by the points whose position vectors are 3bar(i)+2bar(j)-bar(k), 2bar(i)-2bar(j)+5bar(k), bar(i)+3bar(j)-bar(k) .

Find the value of [bar(i)+bar(j)+bar(k),bar(i)-bar(j),bar(i)+2bar(j)-bar(k)] .

Show that the four points with position vectors 3bar(i)+5bar(j), 3bar(j)-5k, 5bar(i)-19bar(j)-3bar(k), 6bar(i)-5bar(j) are non coplanar.

Show that the points -2bar(i)+3bar(j)+6bar(k), 6bar(i)-2bar(j)+3bar(k), 3bar(i)+6bar(j)-2bar(k) form an equilateral triangle.

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.

Find the vector area and area of the triangle with vertices bar(i) + bar(j)-bar(k), 2bar(i)- 3bar(j) + bar(k), 3 bar(i) + bar(j)- 2bar(k) .

Find the position vector of the centroid of the tetrahedron formed by the points 2bar(i)-bar(j)-3bar(k), 4bar(i)+bar(j)+3bar(k), 3bar(i)+2bar(j)-bar(k), bar(i)+4bar(j)+2bar(k) .

The points with P.V's bar(i)+2bar(j)+bar(k), 2bar(i)+3bar(j)+4bar(k) and 4bar(i)+5bar(j)+10bar(k) form