Home
Class 12
MATHS
Find anle between planes bar(r ).(2bar(i...

Find anle between planes `bar(r ).(2bar(i)-bar(j) + 2 bar(k)) = 3, bar(r ).(3bar(i)+6bar(j) + bar(k)) = 4`

Text Solution

Verified by Experts

The correct Answer is:
`Cos^(-1)((2)/(3sqrt(46)))`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 1 D (SAQ)|11 Videos
  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 1 D (LAQ)|13 Videos
  • PRACTICE MODEL PAPER-8

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos
  • PROPERTIES OF TRIANGLES

    SRISIRI PUBLICATION|Exercise LAQ ,SAQ,VSAQ (2DHARDQ) (3DMIS.Q)|44 Videos

Similar Questions

Explore conceptually related problems

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

A point on the line bar(r)=(1-t)(2bar(i)+3bar(j)+4bar(k))+t(3bar(i)-2bar(j)+2bar(k)) is

Find the shortest distance between the skew lines . bar(r)=(6bar(i)+2bar(j)+2bar(k))+t(bar(i)-2bar(j)+2bar(k))andbar(r)=(-4bar(i)-bar(k))+s(3bar(i)-2bar(j)-2bar(k))

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

bar(r)=2bar(i)+3bar(j)-6bar(k)" then find "abs(bar(r)) .

Find a unit vector perpendicular to the plane containing the vector bar(a) = 4bar(i) + 3bar(j) - bar(k), bar(b) = 2bar(i) - 6bar(j) - 3bar(k)

Find the vector area and area of the triangle with vertices bar(i) + bar(j)-bar(k), 2bar(i)- 3bar(j) + bar(k), 3 bar(i) + bar(j)- 2bar(k) .

Find a unit vector bisecting the angle between 2bar(i)-bar(j)+2bar(k), 3bar(i)+2bar(j)-6bar(k) .