Home
Class 12
MATHS
If the vectors bar(a) = 2bar(i) -bar(j)...

If the vectors `bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k)` are coplanar then find p.

Text Solution

Verified by Experts

The correct Answer is:
`= -4`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 1 D (SAQ)|11 Videos
  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 1 D (LAQ)|13 Videos
  • PRACTICE MODEL PAPER-8

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos
  • PROPERTIES OF TRIANGLES

    SRISIRI PUBLICATION|Exercise LAQ ,SAQ,VSAQ (2DHARDQ) (3DMIS.Q)|44 Videos

Similar Questions

Explore conceptually related problems

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If bar(a) = 2bar(i) + 3bar(j) + 4bar(k), bar(b) = bar(i) + bar(j) -bar(k), bar(c ) = bar(i) - bar(j) + bar(k) , compute bar(a)x(bar(b)xbar(c )) and verify that it is perpendicular to bar(a) .

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

If the vectors bar(a)=bar(i)+bar(j)+bar(k), bar(b)=4bar(i)+3bar(j)+4bar(k), and bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent and abs(bar(c))=sqrt(3) then show that alpha=pm1, beta=1

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

If bar(a) = bar(i) - 2bar(j) - 3bar(k), bar(b) = 3bar(i) -bar(j)+2bar(k) then S.T bar(a)+bar(b).bar(a)-bar(b) are perpendicular.

If bar(a)=bar(i)-2bar(j)+3bar(k), bar(b) = 2bar(i)+bar(j)+bar(k), bar(c ) = bar(i)+bar(j)+2bar(k) then find |(axxb)xxc)| and |axx(bxxc)| .

If bar(a)=2bar(i)-bar(j)+3bar(k), bar(b)=-bar(i)+4bar(j)-2bar(k), bar(c)=5bar(i)+bar(j)+7bar(k) and xbar(a)+ybar(b)=bar(c) then (x, y) =

If bar(a) = bar(i) -2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c )=bar(i)+3bar(j)-2bar(k) , compute bar(a).(bar(b)xxbar(c)) .