Home
Class 12
MATHS
If the points whose position vectors are...

If the points whose position vectors are `3bar(i) -2bar(j)-bar(k), 2bar(i)+3bar(j)-4bar(k), -bar(i)+bar(j)+2bar(k), 4bar(i)+5bar(j)+lambdabar(k)` are coplanar, then show that `lambda = -146/17`.

Promotional Banner

Topper's Solved these Questions

  • IPE:MAY-2015[TS]

    SRISIRI PUBLICATION|Exercise SECTION - C|4 Videos
  • IPE:MAY-2015[TS]

    SRISIRI PUBLICATION|Exercise SECTION - C|4 Videos
  • IPE:MAY-2015[AP]

    SRISIRI PUBLICATION|Exercise SECTION - C|7 Videos
  • IPE:MAY-2016 (AP)

    SRISIRI PUBLICATION|Exercise SECTION-3|7 Videos

Similar Questions

Explore conceptually related problems

If the point whose position vectors are 3bar(i)-2bar(j)-bar(k), 2bar(i)+3bar(j)-4bar(k), bar(i)+bar(j)-2bar(k), 4bar(i)5bar(j)+lambdabar(k) are coplanar, then show that lambda = -46/7 .

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

The points whose position vectors are 2bar(i)+3bar(j)+4bar(k), 3bar(i)+4bar(j)+2bar(k) and 4bar(i)+2bar(j)+3bar(k) are the vertices of

If 3bar(i)+3bar(j)+sqrt(3)bar(k), bar(i)+bar(k), sqrt(3)bar(i)+sqrt(3)bar(j)+lambdabar(k) are coplanar then lambda=

If bar(i)-2bar(j), 3bar(j)+bar(k), lambdabar(i)+3bar(j) are coplanar then lambda=

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

The points with P.V's bar(i)+2bar(j)+bar(k), 2bar(i)+3bar(j)+4bar(k) and 4bar(i)+5bar(j)+10bar(k) form