Home
Class 12
MATHS
If "Cos"^(-1)P/a+"Cos"^(-1)q/b=alpha, th...

If `"Cos"^(-1)P/a+"Cos"^(-1)q/b=alpha`, then prove that
`(p^(2))/(a^(2))-(2pq)/(ab).cos alpha+(q^(2))/(b^(2))=sin^(2)alpha`

Text Solution

Verified by Experts

The correct Answer is:
`1-cos^2alpha=sin^2 alpha`
Promotional Banner

Topper's Solved these Questions

  • IPE:MAY-2015[TS]

    SRISIRI PUBLICATION|Exercise SECTION - C|4 Videos
  • IPE:MAY-2015[TS]

    SRISIRI PUBLICATION|Exercise SECTION - C|4 Videos
  • IPE:MAY-2015[AP]

    SRISIRI PUBLICATION|Exercise SECTION - C|7 Videos
  • IPE:MAY-2016 (AP)

    SRISIRI PUBLICATION|Exercise SECTION-3|7 Videos

Similar Questions

Explore conceptually related problems

Show that cos ^(4) alpha + 2 cos ^(2) alpha (1-(1)/(sec ^(2) alpha ))=(1- sin ^(4) alpha )

If the line x Cos alpha+y Sin alpha=p touches x^(2)/a^(2)-y^(2)/b^(2)=1 then a^(2) Cos^(2)alpha-b^(2) Sin^(2)alpha=

(sin^(2)alpha)/(1+cot^(2) alpha) + (tan^(2)alpha)/((1+tan^(2) alpha)^(2)) + cos^(2) alpha =

For any alpha in R , prove that cos ^(2) (alpha -(pi)/(4))+ cos ^(2) (alpha + (pi)/(12))- cos ^(2) (alpha -(pi)/(12))=(1)/(2)

If a=x cos^(2) alpha + ysin^(2) alpha " then " (x-a)(y-a)+(x-y)^(2)sin^(2) alpha cos^(2) alpha =

If cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta are acute angles, then prove that (a) sin ^(2)((alpha-beta)/(2))=(1)/(65) and (b) cos ^(2)((alpha+beta)/(2))=(16)/(65)

If alpha in Q_(4) and "sin" (alpha)/(2) + "cos" (alpha)/(2) = (-1)/(2) "then sin 2" alpha =

For alpha , beta in R , prove that (cos alpha + cos beta )^(2)+ (sin alpha + sin beta )^(2)=4cos^(2). ((alpha-beta))/(2)