Home
Class 12
MATHS
Show that cos^4""pi/8+cos^4""(3pi)/8+cos...

Show that `cos^4""pi/8+cos^4""(3pi)/8+cos^4""(5pi)/8+cos^4""(7pi)/8=3/2`

Promotional Banner

Topper's Solved these Questions

  • IPE:MAY-2018(TS)

    SRISIRI PUBLICATION|Exercise SECTION-C|13 Videos
  • IPE:MAY-2018(TS)

    SRISIRI PUBLICATION|Exercise SECTION-C|13 Videos
  • IPE:MAY-2018(AP)

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos
  • IPE:MAY-2018[AP]

    SRISIRI PUBLICATION|Exercise SECTION-C (SAQs)|7 Videos

Similar Questions

Explore conceptually related problems

For A in R , prove that cos""pi/9.cos""(2pi)/9.cos""(3pi)/9.cos""(4pi)/9=1/16

Prove that cos""(2pi)/7.cos""(4pi)/7.cos""(8pi)/7=1/8 .

Show that (1+"cos"pi/9).(1+"cos"(3pi)/9).(1+"cos"(5pi)/9).(1+"cos"(7pi)/9)=9/16

Show that costhetacos(60^(@)+theta)cos(60^(@)-theta)=1/4 cos3theta and hence deduce that "cos"pi/9"cos"(3pi)/9"cos"(5pi)/9"cos"(7pi)/9=1/16 (T.S.MAY-2016)

Show that cos^(2)""(pi)/(10)+cos^(2)""(4pi)/(10)+cos^(2)""(6pi)/10+cos^(2)""(9pi)/10=2 .

"sin"^(4)pi/8" +sin"^(4)(3pi)/8" +sin"^(4)(5pi)/8" +sin"^(4)(7pi)/8=

cos""(2pi)/(15) cos ""(4pi)/(15)""cos(8pi)/(15) cos""(16pi)/(15)=

Show that "cos"(pi)/65"cos"(2pi)/65"cos"(4pi)/65"cos"(8pi)/65"cos"(16pi)/65"cos"(32pi)/65=1/64