Home
Class 12
MATHS
If y=xsqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(...

If `y=xsqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2)))`, then show that `dy/dx=2sqrt(a^(2)+x^(2))`.

Promotional Banner

Topper's Solved these Questions

  • IPE:MARCH-2019(AP)

    SRISIRI PUBLICATION|Exercise SECTION-B|7 Videos
  • IPE:MARCH-2019 (AP)

    SRISIRI PUBLICATION|Exercise SECTION - C|5 Videos
  • IPE:MARCH-2019(TS)

    SRISIRI PUBLICATION|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx){log(x+sqrt(a^2+x^2))} =

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) then prove that dy/dx=(sqrt(1-y^(2)))/(sqrt(1-x^(2)) .

(d)/(dx ) {(sqrt(a^(2)+x ^(2))+ sqrt(a ^(2) -x ^(2)))/(sqrt(a ^(2) + x ^(2)) - sqrt(a ^(2) - x ^(2)))}=

(log(x+sqrt(x^(2)+1)))/(x) is

int log (x+sqrt(x^(2)-1))dx=

(d)/(dx ) { a log ((a+ sqrt(a ^(2)- x ^(2)))/(x)) - sqrt(a ^(2) - x ^(2)) }=