Home
Class 12
MATHS
Show that the derivatives of Sin^(-1)sqr...

Show that the derivatives of `Sin^(-1)sqrt((x-beta)/(alpha-beta))"Tan"^(-1)sqrt((x-beta)/(alpha-x))` are equal .

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt((alpha-x)(x-beta)))`
Promotional Banner

Topper's Solved these Questions

  • SOLVED MODEL PAPER - 6

    SRISIRI PUBLICATION|Exercise SECTION-B|7 Videos
  • SOLVED MODEL PAPER - 4

    SRISIRI PUBLICATION|Exercise Long Answer Questions|9 Videos
  • SOLVED MODEL PAPER -3

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sin^(-1) sqrt((x-beta)/(alpha-beta)), g(x) = tan^(-1) sqrt((x-beta)/(alpha-x)) then prove that f'(x) = g'(x)

(sin(alpha+beta))/(sin(alpha-beta))=(a+b)/(a-b) then (tan alpha)/(tan beta)=

If alpha, beta , gamma are the roots of the equation x^(3)+4x+1=0 , then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) is equal to

Find the domain of the real valued function f(x)=sqrt((x-alpha)(beta-x)),(theta lt alpha lt beta) .

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If cos^(-1)[(cos alpha+ cos beta)/(1+cos alpha cos beta)]=2 Tan^(-1)x then x=

(tan alpha + tan beta )/( tan (alpha + beta ))+(tan alpha - tan beta )/(tan (alpha - beta )) =