Home
Class 12
MATHS
(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))...

`(dy)/(dx)=(x^(3)-2xtan^(-1)y)(1+y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation (dy)/(dx)+(2xtan^(-1)y-x^3)(1+y^2)=0

(dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

The solution of differential equation x^(2)=1+((x)/(y))^(-1)(dy)/(dx)+(((x)/(y))^(-2)((dy)/(dx))^(2))/(2!)+(((x)/(y))^(-3)((dy)/(dx))^(3))/(3!)

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0