Home
Class 12
MATHS
" If "f(x)=(2-x cos x)/(2+x cos x)" and ...

" If "f(x)=(2-x cos x)/(2+x cos x)" and "g(x)=log_(e)x,(x>0)" then the value of integral "int_(-pi)^( pi)g(f(x))dx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=sin x+cos x and g(x)={(|x|)/(x)x!=0,2,x=0 then the value of int_(-(pi)/(4))^(2 pi)gof(x)dx is equal to

If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) gof(x) dx is equal to (a) (3pi)/(4) (b) (pi)/(4) (c) pi (d) None of these

The value of the integral int_(a)^(a+pi/2)(|sin x|+|cos x|)dx, is

If f(x) = sin x +cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} then the value of int_(-pi//4)^(2pi) go f(x) dx is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x) = |(x,cos x,e^(x^(2))),(sin x,x^(2),sec x),(tan x,1,2)| , then the value of int_(-pi//2)^(pi//2) f(x) dx is equal to