Home
Class 11
MATHS
The point ([p+1],[p]) is lying inside t...

The point ([p+1],[p]) is lying inside the circle `x^2+y^2-2x-15=0` . Then the set of all values of `p` is (where [.] represents the greatest integer function) (a)`[-2,3)` (b) `(-2,3)` (c)`[-2,0)uu(0,3)` (d) `[0,3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

The value of int_(0)^(2)[x+[x+[x]]]dx is (wherel.] represent greatest integer function.3 (b) 2 (c) 0( d) 1

Complete solution of the inequality 3[3-x] + 4[x-2] >=0 is (where [ ] represents the greatest integer function)

A point which is inside the circle x^(2)+y^(2)+3x-3y+2=0 is :

The number of roots of x^(2)-2=[sin x], where [.] stands for the greatest integer function is 0(b)1(c)2(d)3 .

The solution set of the equation [x]^(2) +[x+1] -3=0, where [.] represents greatest integeral function is :

If [x]^(2)-5[x]+6=0, where [.] denotes the greatest integer function,then x in[3,4] (b) x in(2,3](c)x in[2,3](d)x in[2,4)

The value of the integral int_(0)^(3) (x^(2)+1)d[x] is, where[*] is the greatest integer function

If length of the common chord of the circles x^(2)+y^(2)+2x+3y+1=0 and x^(2)+y^(2)+4x+3y+2=0 then the value of [a]. (where [-1] denotes greatest integer function)

The point (1,2) lies inside and (3,4) outside the circle x ^(2) +y ^(2) - 7x + 15 y - c =0, if